2025年吉林省通化市初二上学期三检数学试卷

一、选择题(共10题,共 50分)

1、下列多项式中,能分解出含有因式m+1的多项式是( )

A.m-2m+1 B.m+1 C.m+m D.m-3m2

2、如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画(  )

A. 2   B. 3   C. 4   D. 5

3、平面直角坐标原中,点,若轴.则线段的最小值及此时点C的坐标分别为( )

A.6,

B.3,

C.2,

D.1,

4、已知三角形两边长分别为510,则该三角形第三边的长可能是(  

A.5 B.9 C.16 D.18

5、正方形具有而菱形不一定具有性质的是( )

A. 对角线互相平分   B. 对角线相等

C. 对角线平分一组对角   D. 对角线互相垂直

6、下列各式从左到右的变形中,是因式分解的是(        

A.

B.

C.

D.

7、的平方根是  

A. 2   B. -2   C. 2   D.

 

8、下列四个图案,其中轴对称图形的是 

 

 

9、在平面直角坐标系中,已知点A(1,2),B(2,1),C(﹣1,﹣3).D(﹣2,3),其中不可能与点E(1,3)在同一函数图象上的一个点是(  )

A.点A

B.点B

C.点C

D.点D

10、如图,将三角形纸片折叠,为折痕,点C外的点F处,,则( )

A.95°

B.105°

C.115°

D.125°

二、填空题(共10题,共 50分)

11、如图,已知x轴上一点By轴上的一动点,连接,以B为直角顶点,为腰作等腰直角,连接,则的最小值是_________

12、x+y=5,xy=2,则x2+y2_____

13、如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点FCD的中点,则EF的最大值为__

14、写出的一个有理化因式_____

15、如图,一次函数的图象交于点,则________.(填>,<)

16、如图,在中,,将平移5个单位得到,点PQ分别是的中点,则的最大值为__________

17、如图,点的平分线上的一点,过点于点,若,则___________

18、如图,在等腰△ABC中,ABAC,点DBC的中点,连接AD,点PA上,过点DDEBPDFCP,则以上结论中:①BDCD;②△ABD ≌△ACD;③△BPC是等腰三角形;④DEPE.正确的有________

19、如图,在四边形ABCD中,点E为AB的中点,于点E,,则四边形ABCD的面积为_________

 

20、已知如图BDCE是△ABC的高,∠A=50°,线段BDCE相交于点O,则∠BOC________

三、解答题(共5题,共 25分)

21、某校为了了解七年级共480名同学对防疫知识的掌握情况,对他们进行了防疫知识测试,现随机抽取甲、乙两班各15名同学的测试成绩进行整理分析,过程如下:

【收集数据】

甲班15名学生测试成绩分别为(单位:分):

78,83,89,96,100,85,100,94,87,90,93,92,98,95,100;

乙班15名学生测试成绩中90≤x<95的成绩如下:91,92,94,90,93.

【整理数据】

班级

75≤x<80

80≤x<85

85≤x<90

90≤x<95

95≤x<100

1

1

3

4

6

1

2

3

5

4

【分析数据】

班级

平均数

众数

中位数

方差

92

a

93

47.3

90

87

b

50.2

【应用数据】

(1)根据以上信息填空:a b

(2)由表中数据,请根据所学知识判断哪个班的学生防疫测试的整体成绩较好?并从平均数、众数、中位数、方差中任选2个说明理由;

(3)若规定测试成绩90分及以上为优秀,根据(2)中判断结果,用成绩较好的班级的数据,估计参加防疫知识测试的480名学生中成绩为优秀的学生共有多少名.

22、先化简,然后从﹣2≤x≤3中选择一个你最喜欢的整数作为x的值代入求值.

23、如图1,已知正方形,点CBE的延长线上,点A的延长线上,且,过点C的平行线,过点A的平行线,两条平行线相交于点D

(1)证明:四边形是正方形;

(2)当正方形绕点B顺时针(或逆时针)旋转一定角度,得到图2,使得点G在射线上,连接,点Q是线段的中点,连接,猜想线段和线段的关系,并说明理由;

(3)将正方形绕点B旋转一周时,当等于45°时,直线于点H,探究线段的长度关系.

24、如图:是一个大型模板,设计要求相交成角,相交成角,现小燕测得,她就断定这块模板是合格的,这是为什么?

25、先化简,再求值:x2(﹣x+2)﹣(﹣x+1)(x2x﹣3),其中x满足2x2+3=4x

首页
栏目
栏目
栏目
栏目
下载试卷